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Abstract

Paper recommendation is a research topic to provide users
with personalized papers of interest. However, most existing
approaches equally treat title and abstract as the input to learn
the representation of a paper, ignoring their semantic relation-
ship. In this paper, we regard the abstract as a sequence of
sentences, and propose a two-level attentive neural network
to capture: (1) the ability of each word within a sentence to
reflect if it is semantically close to the words within the title.
(2) the extent of each sentence in the abstract relative to the
title, which is often a good summarization of the abstract doc-
ument. Specifically, we propose a Long-Short Term Memory
(LSTM) network with attention to learn the representation of
sentences, and integrate a Gated Recurrent Unit (GRU) net-
work with a memory network to learn the long-term sequen-
tial sentence patterns of interacted papers for both user and
item (paper) modeling. We conduct extensive experiments on
two real datasets, and show that our approach outperforms
other state-of-the-art approaches in terms of accuracy.

Introduction

Ever-increasing number of research papers have been pub-
lished over the last decades, resulting in a problem known
as ‘information overload’. Researchers have to spend more
time searching for articles articles they are interested in.
Therefore, paper recommendation is more important than
before. Collaborative filtering (CF) has been widely adopted
in recommendation systems, which explores user-item his-
torical interactions (e.g., purchase). However, CF often gen-
erates poor performance since the user-item interaction ma-
trix is very sparse in many fields. Thus, auxiliary informa-
tion is introduced to enhance recommendation performance.

In recent years, many approaches have been proposed
to exploit various auxiliary information. For paper recom-
mendation, two types of auxiliary information are widely
adopted for better recommendations, including structural
and textual information. The former type refers to paper ci-
tation relationships, i.e., papers that a paper cites or those
cite it (Sugiyama and Kan 2010; 2013; Mohammadi et al.
2016). The structure of paper citations may indicate the
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Figure 1: The semantic relationship between title and ab-
stract taken from (Burke 2007). Words highlighted in red are
semantically close to those in title. The weight (importance)
of each sentence is shown above the arrow.

influence of one paper to another, but it ignores the real
content and semantics of the paper. (Hassan 2017) points
out another issue that some newly published papers may
not be cited and some researchers prefer to cite their own
less relevant papers. The latter type tries to make use of
title and abstract to better represent a paper, for example,
by extracting its topics (Wang, Wang, and Yeung 2015;
Kim et al. 2016). Some researchers also integrate keywords
and domain of a paper as well as user profiles to generate
better recommendation lists (Sun et al. 2013). Our paper
follows this research direction that uses textual information,
which refers to title and abstract of papers in our case, for
paper recommendation. We opt not to use full paper text for
recommendation since it contains a lot of noise and may de-
teriorate the overall performance. We leave it as a part of
future work for further exploration.

However, most existing text-based approaches suffer from
the limitation that they simply treat title and abstract of a
paper without any difference, failing to grasp the seman-
tic relationship between them. In our viewpoint, we regard
the title as a conclusive and informative sentence relative to
the whole abstract document, and thus combining both of
them can better capture the semantics of a specific paper. To



explain, we try to analyze a paper in both word level and
sentence level, as illustrated in Figure 1. Specifically, in the
word-level part, we presume that words in title are the best
indicator to reflect the research topic of a paper. We thus put
more weights on these informative words when construct-
ing the representation of a paper’s abstract sentences. Take
the fourth sentence in the abstract as an example, the high-
lighted words ‘hybrid’, ‘recommendation’ and ‘systems’ are
more representative than other words, given the fact that they
offer more semantic information that is consistent with the
title. Then, in the sentence-level part, we note that each sen-
tence in the abstract has various degrees of ability to reflect
the semantic meaning of the paper. For example, the sec-
ond sentence in Figure 1 is a general statement that may
appear in many other papers. Apparently, this sentence has
little contribution to grasp paper’s topic and semantics. In
contrast, the fourth sentence is the most significant one be-
cause it elaborates on the main idea of the paper in question.

To resolve these issues, in this paper we propose a Title-
Abstract Attentive Semantic (or TAAS for short) network
to capture the semantic relationship between title and ab-
stract for paper recommendation. It consists of two attentive
sub-networks, namely word-level and sentence-level atten-
tive sub-networks. We treat the abstract as a sequence of
sentences, and regard the title as a conclusive sentence for
the abstract. To be specific, in the word-level sub-network,
we propose an attentive Long-Short Term Memory (LSTM)
network to learn sentence representation by considering the
importance of a word (in an abstract sentence) with respect
to those in the title. In the sentence-level sub-network, we
integrate a Gated Recurrent Unit (GRU) network ' with a
memory network seamlessly to capture the relationship be-
tween the title and each sentence in the abstract. In this way,
we will construct fine-grained user preference by capturing
the sequential sentence patterns.

Our main contributions are summarized as follows:

e We propose a novel approach TAAS to capture the seman-
tic relationship between title and abstract in both word
level and sentence level. To the authors’ best knowledge,
this is the first model to take into account their semantic
relationship for paper recommendation.

e To learn fine-grained user preference, we present a key-
value memory network to memorize the user preference
for sequential sentence patterns on the basis of title rep-
resentation, which overcomes the shortcoming that tradi-
tional GRU networks prone to forgetting effective mem-
ory. In addition, the title embedding is used as global
memory consecutively updated by abstract sentences, i.e.,
to learn user’s long-short interactive preference.

e We have conducted extensive experiments on two real-
world datasets (citeulike-a, PRSDataset) to evaluate the
effectiveness of our approach. The experimental results
show that our model outperforms several state-of-the-art
approaches in terms of ranking accuracy.

'In word-level attentive sub-network, the LSTM network out-
performs the GRU network in terms of recommendation accuracy,
while in sentence-level attentive sub-network, the GRU network
works better than LSTM network for recommendation

The TAAS Model

In this section, we will first present the general framework
and show how to seamlessly integrate the two attentive sub-
networks. Then, the detailed structure of these sub-networks
will be illustrated, especially on how to capture the semantic
relationship between title and abstract. By doing so, we can
construct fine-grained user profiles in our model.

General Framework

Our TAAS model is a two-level attentive recommendation
neural network, which mainly focuses on learning the se-
mantic relationship between title and abstract of a paper in
both word level and sentence level, so as to learn a fine-
grained user profile. For the sake of discussion, we will in-
troduce a number of notations. Suppose we have N users in
the user set U, and M papers in the paper (item) set 1. The
symbols u; and ¢; are used to denote the embedding vectors
of the user i in U and item j in I, respectively. The general
framework of our approach is illustrated in Figure 2. We
devise two attentive sub-networks to learn user preference
vector m; based on sequential sentence patterns, as well as
item content vector ¢; derived from the textual information
in title and abstract. Taking the same combination method
suggested by (Chen et al. 2018), the feature representations
of user p; and item g; can be formulated as follows.

P = u; + am; (D

q; =1; + Be; (2)
where « € [0,1] and 8 € [0, 1] are parameters to indicate
the importance of semantic embeddings m; and c;. In the
experimentation, we will tune these two parameters to study
the effect of semantic relationship between abstract and title.

Ranking Function. After optimizing the above semantic
weight parameters, for every user i, we calculate the esti-
mated ranking score &;; for each candidate item j in order to
generate a ranking list of items. The following inner product
of two vectors is taken as the ranking function.

Zij = pi q; (3)

Objective Function. To generate a top-k paper recom-
mendation, we adopt a well-known pair-wise personalized
ranking objective function (Rendle et al. 2009) to train our
model. The purpose is to ensure that users will have stronger

preference on interacted items than those without any inter-
actions, given by:

arg min z
S}

(i,3,k)€Ds
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where o(-) and © denote the sigmoid function and all the pa-
rameters to learn, respectively; || - || is the Frobenius norm.
The training set D consists of many tuples (¢, 7, k), imply-
ing user i interacted with item (paper) j but not with k.

Model Workflow. The workflow of our model is shown in
Figure 2. Suppose user ¢ has a preference for paper j. We
first extract word embedding w. , from the x-th word in the
title, and word embedding w,, , from the x-th word in the
y-th abstract sentence. For simplicity, we omit the symbol j
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Figure 2: The architecture of our TAAS framework, which mainly consists of two sub-networks, namely word-level attentive
sub-network (left) for sentence embeddings and sentence-level attentive sub-network (middle) for preference learning.

since they all belong to the same paper. The extracted word
embeddings from title and abstract sentences will be taken
as sequential input to the word-level attentive sub-network,
which produces the feature representation of title ¢ and ab-
stract sentence a,, i.e., the y-th sentence of abstract. Specif-
ically, these word embeddings will be used to compute the
relative importance (attention) of abstract words by compar-
ing them with title words. The underlying assumption is that
words in the abstract have more importance if they are se-
mantically close to those in the title.

Next, we denote abstract as a sequential set of sentences:
A = {ay,as,...,a,}, where n is the number of sentences
in the abstract. We take the set of abstract sentences A and
title £ as input to the sentence-level attentive sub-network,
where the significance of each abstract sentence relative to
the title is taken into account. The output of the sub-network
includes: (1) the content vector c¢; for paper j, represent-
ing the item features learned from abstract and title. (2) the
preference vector m; for user ¢, representing the user fea-
tures learned from sequential sentence patterns. Thus, we
can obtain the user and item representation by Equations 1
and 2, respectively. Finally, our TAAS model can be trained
by optimizing the objective function by Equation 4.

Word-Level Attentive Sub-Network

This sub-network aims to capture the semantic relationship
between words in each abstract sentence and those in title,
whereby providing title-aware sentence representation. We
adopt a pre-trained Word2 Vec model? to retrieve the embed-
ding vectors for all the words in the title and abstract. The
sequential positions of words in a sentence are important
features to learn a sentence representation. Hence, we de-
vise a LSTM network to model the word sequences. Specifi-
cally, the LSTM network contains a chain of repeating mod-
ules with a cell state in each module to store important se-
quential information, which will be updated at every time
step. In addition, it is capable of accommodating variable-
length sequences, which is suitable for our word sequences
of title and abstract. We denote the set of title words as

Zhttps://drive.google.com/file/d/
0B7XkCwpISKDYNINUTTISS21pQmM/edit

W ={w. ,w.»,...,w. .}, and the set of abstract words as
Wy = {wy 1,wy 2, ..., wy m } in y-th sentence, where n and
m are the length of title and abstract sentence, respectively.
These word embeddings are subsequently input to two sep-
arate LSTM networks (but sharing same weights 6), which
will update the current hidden state vector h, according to
the previous state h;_; and the new input word vector.

17w‘,t$ﬂ79) &)
h’tw = LSTl\/I(h,tw_1 , ’LU‘%tw , 9) (6)

where E% and h,  represent the outputs of the two LSTM
networks at time steps ¢/, and t,,,, respectively. The network
is trained to learn network parameters 6.

To effectively grasp the correlations between words in
title and those in abstract, we design an attention mecha-
nism to learn the relative importance of each sentence word,
whereby the embedding of abstract sentence can be repre-
sented more accurately. Specifically, for each word in an ab-
stract sentences, we compute the correlation by inner prod-
ucts between its embedding and every title word’s embed-
ding, yielding the cumulated similarity score sim(w,, ,,t’):

hy, = LSTM(hy

sim(wy 4, t')

I
]
g
i

where t' = (w. 1, w. 2,...,w. ,,) denotes a sequence of title
words, n is the length of title. In general, the higher score
indicates the stronger correlation of a sentence word relative
to title. Then, we can obtain the weight of each word in an
abstract sentence by normalizing the similarity score via a
softmax function, given by:

exp(sim(wy 4, t'))
> iy exp(sim(w, j, ')

where m is the length of abstract sentence. Then, we can
aggregate all the hidden state of words in the sentence to
obtain its feature representation a,;, given by:

(®)

Qg =

m

=> ash, 9)
=1
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Figure 3: The detailed realization of the Key-Value Memory
Network. It contains two operations: reading and writing.

Note that the title representation can be retrieved by the final
state of the LSTM network h,,.

t=h, (10)

Finally, we take title £ and abstract sentences A as input to
the sentence-level attentive sub-network.

Sentence-Level Attentive Sub-Network

The goal of this sub-network is to grasp the importance of
each abstract sentence with respect to the title, constructing
fine-grained user preference and paper representation cor-
rectly. We regard title as a sentence that can best summarize
a paper, while sentences in abstract provide rich semantic
information to sequentially explain the detailed meanings or
implication of the title. Specifically, we introduce a GRU
network, where the title representation £ is used to initialize
global memory. We contend that it is important to carefully
initialize the network weights, whereby an RNN-based net-
work can be easier to train and receive better performance.
Then, we proceed to keep updating the global memory when
new abstract sentence arrives at time step ¢.

op=t (11)
O;, = C}RU(OtSi1 ; Ay 9) (12)
where o, indicates the hidden state of the GRU network at
time step ¢ and @ is the network parameters to learn.
Although a GRU network can capture the semantic cor-
relation between title and abstract sentences to some extent,
it still suffers from two possible shortcomings. First, it con-
siders the semantic relationships between different abstract
sentences and title in the same latent space, which may ig-
nore the potential differences of abstract sentences in seman-
tics. Second, as the sequential sentences keep arriving, the
GRU network may discard long-term preferences of users,
and only retain the recent memories. To resolve these issues,
inspired by (Chen et al. 2018), we integrate our GRU net-
work with a Key-Value Memory Network (KV-MN), from
which a user vector can be derived to reflect the long-term
preferences. Specifically, KV-MN decomposes each mem-
ory slot into a key vector and a value vector. An advantage

of KV-MN is that we can associate multiple latent key vec-
tors with their value vectors, where each key represents a
semantic aspect of the paper in question. Therefore, given
key vectors, we can read and merge their value vectors ac-
cordingly to construct a user preference.

Suppose there are K latent keys in our KV-MN, the
whole network shares K embedding key vectors in the la-
tent key set ' = {f1, fa,..., fr}. For user i, we define
her corresponding K memory value vectors as a set of
Vi = {v;1, V2, ..., vix }. Note that the value vectors are vary-
ing from person to person. The input of the KV-MN is the
hidden state of GRU network, representing the accumulated
knowledge about sequential sentence patterns at a certain
time step. The memorizing process of the KV-MN contains
two main operations, i.e., reading and writing as shown in
Figure 3.

Reading. In the reading operation, we utilize multiple la-
tent key vectors to match their own value vectors, then we
sum them up according to their weights of importance to
the user preference. Specifically, we first define the attention
score 7 (t) of key feature fy, in a time step ¢, given by:

ri(t) =0 - fx (13)

Then we can calculate the importance of each semantic
space relative to the user preference by a softmax function:

et
W) = (s (D)

where ~ is the strength parameter to tune. Now, we can de-
rive the user preference vector m; by summing the value
vectors with the importance weight of each semantic space
21 (t,) in the last time step ¢,., defined by:

(14)

K
mi =Y z(t,) - vik (15)
k=1

Writing. The value vectors for user ¢ will be updated in
the current time step £. to memorize effective semantic in-
formation of the paper as well as forgetting useless memo-
ries. The ratio g of memory forgetting is calculated as fol-
lows:

g=0(E"o;, +by) (16)

where E and b, are the forgetting parameters to study. Thus,
we update the value vectors by considering the importance
of each semantic space zj(t.):

V], — Uik — Vi © (2x(te) - 9) (17)

where © indicates the element-wise product. After that, the
memory vector can be computed by taking a normalization
function, followed by the update of user’s value vector:

yi, = tanh(H "o, +b,) (18)

Vi < Vi + 2k(te) -yt (19)

where H and b, are the memory parameters to learn. Intu-
itively, the more importance of a semantic space is, the more
influence it imposes on the corresponding value vector.
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Figure 4: Performance comparison of all the approaches, while the left two subfigures illustrate the results on the citeulike-a

dataset, and the right two subfigures are on the PRSDataset.

The output vector of the GRU network represents the item
content vector, i.e., ¢;. The user preference vector m; can
be obtained by applying a reading operation on the output
of hidden state at the last time step. Finally, we take the
content-based embeddings m; and c¢; as input to the pair-
wise ranking objective function for model training.

Experiments

In this section, we study three research aspects of our model:
(1) the effectiveness of the proposed approach in compar-
ison with other state-of-the-art methods; (2) the impact of
the two-level attentive sub-networks; and (3) the influence
of the semantic weight parameters used in our model.

Experimental Setup

Datasets. Two real-world datasets are adopted in our exper-
iments, namely citeulike-a and PRSDataset. Both datasets
contain the information of title and abstract for papers, and
the interactions between users and papers. For each dataset,
we randomly split it into two subsets, where 80% of user-
paper interactions are classified as the training set and the
rest 20% as the testing set.

The first dataset citeulike-a is extracted from CiteULike?,
and the other dataset PRSDataset comes from CSPubGuru*.
For both datasets, we remove the items with missing and de-
fective abstracts as well as their relative interactions. We also
filter out the users who have interactions with at most one
item. Finally, the citeulike-a dataset is composed of 5548
users, 10987 items (papers), and 134510 user-item pairs.
The PRSDataset dataset consists of 2453 users, 21940 items,
and 35969 user-item pairs. Basic text processing is adopted
to remove stop words from title and abstract, as well as the
segmented (abstract) sentences with less than 20 characters.

Baselines. We mainly compare our TAAS model with the
following state-of-the-art paper recommendation methods.

o BPR (Rendle et al. 2009) is a famous pair-wise personal-
ize ranking model based on implicit feedback. Our model
takes the same objective function as the BPR, but differs
in the formulation of user and item representations.

3http://www.citeulike.org/fag/data.adp
*https://sites.google.com/site/tinhuynhuit/dataset

e CDL (Wang, Wang, and Yeung 2015) attempts to com-
bine an auto-encoder neural model (for better item repre-
sentation based on textual information) and a traditional
collaborative filtering method.

e ConvMF (Kim et al. 2016) applies a convolution neural
network (CNN) to learn the representation of items, and
then jointly model user preference by integrating with a
traditional matrix factorization model.

Recently, some novel recommendation approaches (Tran,
Sweeney, and Lee 2019; Chen et al. 2019; He et al. 2018)
have been introduced to deal with different practical recom-
mendation problems when various information is available.
Nevertheless, given textual information for papers, the pro-
posed baseline methods are most suitable and representative
for paper recommendation compared with other approaches.
All the implementation of selected methods is obtained by
either the source code from the authors (CDL and ConvMF)
or a famous recommendation algorithm library LibRec (Guo
et al. 2015) (BPR). In this way, we are able to guarantee all
the results of baseline methods are promising and reliable.

Parameter Settings. The best model parameters are ei-
ther suggested by the original papers or empirically set
by our experiments. We have tested the neural batch
size in {128,256,512,1024}, the L2 loss weight in
{0.1,0.01,0.001}, and tuned the semantic weight parame-
ters o and 3 from O to 1 stepping by 0.2 and the learning
rate in {0.1,0.01,0.001,0.0001}. Furthermore, we test the
number of neurons in each hidden layer and that of latent
memory keys from 10 to 100 stepping by 10. All the network
parameters are initialized by normal distribution (0, 0.1). We
optimize our models with the Adam gradient descent.
Evaluation Metrics. We adopt four widely taken ranking
metrics to evaluate recommendation accuracy of all compar-
ison methods, including Precision at n (Pre@n), Mean Re-
ciprocal Rank (MRR), and Normalized Discounted Cumu-
lated Gain (NDCG). The detailed definitions of these met-
rics can be found in (Ricci et al. 2010). Generally, the higher
these metrics are, the better performance we can reach.

Performance Comparison with Other Models

Figure 4 presents the recommendation performance of all
comparison methods. The results show that our TAAS model
can consistently and significantly outperform the other mod-
els in all ranking metrics.
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As expected, due to high sparsity of our datasets, the most
basic approach BPR, which only takes into account the his-
torical interactions of users and items, produces the worst
performance among the four approaches. It implies the im-
portance of textual content information (i.e., title and ab-
stract) in improving performance of paper recommendation.

Among all the methods with textual content, ConvMF
achieves better performance than CDL. One possible expla-
nation is that the item representation method (i.e., convo-
lution neural network, CNN) of ConvMF is more powerful
than that of CDL, which is a relatively shallow model (i.e.,
an auto-encoder model) per se. In other words, we conclude
that carefully modeling textual information will lead to bet-
ter representation of items, and thus enhance recommenda-
tion performance eventually.

In addition to extracting features from title and abstract,
our TAAS model further captures the semantic relationship
between them. The fact that significantly better performance
is obtained also helps demonstrate the usefulness of such
interactions between title and abstract.

Model Ablation

We conduct extensive experiments to evaluate the effect
of the two sub-networks by designing a number of variant
TAAS models below.

o TAAS-AVG removes the word-level attention framework
and uses the average of LSTM output vectors to represent
an abstract sentence. The difference lies in the word-level
sub-network.

o TAAS-KS adopts a pre-trained sent2vec model’ to get
sentence representation. It removes the word-level atten-
tive sub-network.

Shttps://drive.google.com/file/d/
0B6VhzidiLvjSal9uYWILUEkzX3c/view

e TAAS-GS further excludes the part of Key-Value Mem-
ory Network on the basis of TAAS-KS.

e TAAS-G only excludes the part of Key-Value Memory
network, but retains the word-level sub-network.

o TAAS-A randomly initializes the input of the GRU net-
work instead of inputting the title representation.

The results of these variant models are illustrated in Fig-
ure 5, from which we can observe the following insights.

(a) Word-Level Attentive Sub-Network

From Figure 5, it is noted that TAAS and TAAS-G have
better performance than TAAS-KS and TAAS-GS respec-
tively. It suggests that sentences in abstract can be mod-
eled more appropriately with the involvement of word cor-
relations between title and abstract sentences. The fact that
TAAS outperforms TAAS-AVG also confirms that the word-
level attention is quite effective in our model. To sum up, the
word-level attentive sub-network provides a better represen-
tation of both title and abstract sentences, and it is necessary
to leverage the word-level semantic relationship between ti-
tle and abstract.

(b) Sentence-Level Attentive Sub-Network

A major difference between TAAS and TAAS-A lies in
the initialization methods for the GRU network. The better
performance of TAAS than TAAS-A reflects that initializa-
tion by title representation can capture valuable knowledge,
which can be further fine-tuned by the following arrived ab-
stract sentences. Meanwhile, the comparison between TAAS
and TAAS-G suggests that key-value memory network is
valuable in memorizing long-term sequential sentence pat-
terns for each user, and thus helps generate better user pref-
erence modeling. As a summary, both key parts of sentence-
level attentive sub-network, i.e., the title representation as
initialization, and long-term preference by memory network
shade a light on better performance.

(c) Integration of Two-Level Attentive Sub-Network



Since our TAAS model has successfully beat the other
variants, it is safe to draw a conclusion that integrating both
word-level and sentence-level sub-networks can generate the
best recommendation performance by considering the title-
abstract semantic relationships.

Effect of Parameters «, 3

The semantic weight parameters «, 8 in Equations 1 and 2
indicate the importance of semantic information in modeling
paper and user representations. We tune the parameters from
0 to 1 stepping by 0.2, and the results are given in Figure 6.

The performance trends are quite similar in two datasets.
They both get better performance when increasing the val-
ues of these parameters, and reach the best performance dur-
ing (0.4, 0.6). However, further tuning these parameters will
greatly decrease the recommendation performance. In other
words, a proper combination of intrinsic embedding and
semantic embedding (from title-abstract) is likely to better
model both user and paper representations.

Related Work
Structure-based Paper Recommendation

The first type of paper recommendation is based on the cita-
tion structure, i.e., the papers it cites and those citing it. The
constructed paper graph is further mined to calculate paper
similarity and generate paper recommendations. For exam-
ple, (Sugiyama and Kan 2010) construct paper representa-
tion based on the TF-IDF technology, which is heavily relied
on the term frequency. The similarity between papers based
on citation references is used as weights to build user and
paper profiles. However, not all relevant works can be fully
covered in one paper. To alleviate this issue, (Sugiyama and
Kan 2013) further improve their previous model by extend-
ing a paper’s reference list with the involvement of the top-N
relevant papers. Moreover, (Mohammadi et al. 2016) build a
basic paper graph based on the reference citations. A ran-
dom walk algorithm is devised to generate recommendation
items. To sum up, the underlying assumption of this research
line stresses that the citation topology can accurately reflect
paper relatedness. However, in many cases, such an assump-
tion cannot hold because: (1) most recently published papers
cannot be referred to by previous papers; (2) some valu-
able references may be missing due to the unawareness of
researchers; and (3) some irrelevant or less relevant papers
may be adopted in the reference list, for example, some other
papers from the same authors.

Content-based Paper Recommendation

A more straightforward line of research is to model a pa-
per based on its content, and learn user profiles by summa-
rizing the representation of papers. For paper recommenda-
tion, the content information refers to the title, keywords,
abstract and so on. Many models have been proposed to bet-
ter understand papers under estimation. For example, (Wang
and Blei 2011) propose the collaborative topic regression
(CTR) model, which combines a Latent Dirichlet Alloca-
tion (LDA) topic model with a probabilistic matrix factor-
ization (PMF) (Salakhutdinov and Mnih 2007) model for

better recommendation. However, LDA topic models require
rich word contents which may not be available in paper rec-
ommendation. The full-text of papers cannot be accessed in
open-source datasets, and only relatively short abstract ex-
ists in most cases. To tackle this problem, (Wang, Wang, and
Yeung 2015; Vincent et al. 2010) aim to enhance PMF by
a deep representation of item contents. Furthermore, (Kim
et al. 2016) introduce a ConvMF model to capture the con-
textual information by applying a convolution neural net-
work (CNN) network. They seamlessly integrate the CNN
network with PMF, and enhance the recommendation accu-
racy. Recently, (Hassan 2017) introduce an LSTM network
to learn the semantic paper representation, where title and
abstract of the paper are used as input to the LSTM network.
This work is very relevant to our work in that they also high-
light the importance of both title and abstract. However, they
do not consider the title-abstract semantic relationship, and
provide no realization to verify their basic idea.

Memory Network For Recommendation

To handle sequential data more effectively, memory network
(MN) has been proposed to memorize long-term dependen-
cies (Weston, Chopra, and Bordes 2014). MN introduces
a memory matrix to store historical information by updat-
ing it when new information is available. Recently, MN has
been adopted in recommendation system. (Chen et al. 2018)
propose a RUM model that integrates the insights of CF
with MN, constructing user preference by accommodating
long-term historical interactions. (Huang et al. 2018) com-
bine GRU and MN to enhance sequential recommendation,
where knowledge base is leveraged to better update the MN.
Our TAAS model also integrates MN andb GRU seamlessly
to learn title-abstract semantic relationship and long-term se-
quential sentence pattern of papers.

Conclusions

In this paper, we proposed a two-level attentive neural net-
work called TAAS to capture the semantic correlation be-
tween title and abstract for paper recommendation. The
word-level attentive sub-network aimed to generate sentence
representations, the assumption behind which is that words
appearing in title are more informative than others. The
sentence-level attentive sub-network took the title represen-
tation as the global memory, which was then iteratively up-
dated by abstract sentences, and sequentially memorized by
a key-value memory network. Our experimental results on
two real datasets have confirmed that the proposed method
can reach superior performance to other counterparts.
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